

Thesis

Distribution and configuration

of agents for NMS in a

reasonable time

Authors: Robin Jonsson & Simon
Blixt

Supervisor: Peter Adiels
Semester: Autumn 2013
Course code: 2DV00E

I

Abstract
With this paper the authors intended to simplify deployment and management
of monitoring agents for a Network Monitoring System. The authors found

interest on the subject since the time consumed to deploy and manage agents
was found to be very inefficient. During a lecture with the Swedish based

company Op5 AB at the Linnaeus University in Kalmar, Sweden, the authors
presented the complex of problem. The lecturer showed great interest in a
solution on the subject and the authors of this paper found it to be a great

thesis subject for the Bachelor degree in Computer Science.

By the year of 2016 it is expected that the number of network connected
devices will grow threefold, there will be four times as much IP traffic and
the data storage demand will increase tenfold. This growing demand will also

affect the requirement on the Network Monitoring System and in turn the
monitoring agents.

In this paper the authors created a baseline, which consisted of a timing
regarding the time consumption for manual deployment, configuration and

management of the monitoring agents. The authors also developed an
automated way for deployment, configuration and management of monitoring

agents by integrating a Content Management Software called Puppet,
combined with several scripts. To simplify the management and deployment
furthermore a widget was developed for Op5’s Web based User Interface

called Ninja.

The developed solution was measured against the baseline and a result

regarding time consumption was presented. The result fell into a discussion
on the subject of automatization and the time savings that it may result in due

to less frequent human errors and a less repetitive work processes.

The presented solution is tested and developed for Centos. But it should also

work for other Linux distributions with varying modifications, which is
briefly discussed in this paper. The solution and code presented in this paper

may be updated and is available at Github1.

Keywords : Network Monitoring System, Op5, Nagios, NMS, Content
Management System, CMS, Puppet, System integration, Automatization,

Deployment of agents, Management of agents

1
 https://github.com/jesajah/RoSi

II

Foreword
We would like to thank Marcus Wilhelmsson, Lecturer in Computer Science
at Linnaeus University, for the contribution of hardware and consulting

during this paper. The authors would also like to thank Peter Andersson,
Product Manager at Op5, for his guidance and faith.

III

Contents

1. Introduction __ 1
1.1 Background __ 1
1.2 Purpose __ 1
1.3 Previous research __ 2
1.4 Target audience __ 2
1.5 Problem__ 2

2. Theory ___ 3

2.1 Network Monitoring System ___ 3
2.2 Configuration Management System ______________________________________ 4
2.3 Other theory ___ 6

3. Method __ 7

3.1 Scientific approach___ 7
3.3 Implementation __ 7
3.4 Reliability ___ 11

4. Result __ 13

4.1 WEB GUI __ 13
4.2 Puppet __ 15
4.3 Scripts __ 17
4.4 Test results ___ 18
4.5 Overview ___ 20

5. Discussion___ 25
5.1 WEB GUI __ 25
5.2 Puppet __ 26
5.3 Scripts __ 27
5.4 Test results ___ 27
5.5 Other discussions ___ 28

6. Conclusion __ 30
6.1 Further research __ 31

References __ 32

IV

Attachments ___ 36
A – WEB GUI __ i
B - Manifest for puppet_script ___ v
C – Manifest for NRPE __ vi
D - Manifest for monitor_script __ix
E – Add check on nodes __ x
F - Add hosts ___ xiii
G - Add services linux __ xiv
H - Add nodes puppet__ xvi
I - Remove nodes puppet __xvii
J - Puppet code for runinterval and usecacheonfailure _____________________ xix

1

1. Introduction
Deployment and maintenance of software may be a very time consuming and
complex duty. As more and more systems are put into production and the IT

infrastructure is growing, the more it is required that repeatable tasks are kept
to a minimum. [1] By the year of 2016 it is expected that the number of
network connected devices will grow threefold, there will be four times as

much IP traffic and the data storage demand will increase tenfold. [8]

According to the authors of this paper the increasing demand indicates
growing requirements on the Network Monitoring System as more and more
systems interconnect. The growing requirements to distribute the agents for

the Network Monitoring System might lead to increased administration for
the IT personnel.

The authors of this paper will focus on how to distribute the agents of a
Network Monitoring System and how to make changes to the agents using a

Content Management System combined with several scripts. When a solution
has been created and evaluated, the authors are going to try to find a way to

integrate the solution with a web based graphical user interface. The
integration is created to interconnect with the Network Monitoring System,
and thereby simplify the deployment and management of agents.

1.1 Background
In the beginning of 2013 the Swedish based company Op5 AB held a lecture
at the Linnaeus University in Kalmar, Sweden. During this lecture a

discussion occurred on the subject of a simple way to distribute and manage
Network Monitoring System agents on the nodes. This was a function the

authors had been longing for during earlier courses at the University, since
the time consumed to configure multiple agents felt very inefficient. The
lecturer from Op5 showed great interest in a solution on the subject and by

the end of the lecture the authors of this paper and the lecturer from Op5
exchanged contact information to be able to keep in touch.

1.2 Purpose
The authors’ intention and expectation is to produce a solution on how it is
possible to manage and deploy Network Monitoring System agents and

services on monitored nodes in a network. When a solution is created, the
authors intend to create a graphical user interface for the solution. This can be
integrated to the Network Monitoring System to make the solution more user-

friendly. By succeeding with this the authors hope to reduce the time and
ease the management of Network Monitoring System agents for

administrators in a large IT environment.

2

1.3 Previous research
The authors have not found any published scientific research on the specific
subject. The most related work to this paper is a published article where the
author has published a roadmap to integrate Puppet with Nagios [22]. There

is also scientific research regarding Configuration Software Systems such as
Puppet and Network Monitoring Systems like Nagios. The authors of [19]

use the Content Management System, Puppet to accomplish cluster
deployment and recovery to simplify cluster management. In [20] the authors
use Nagios as a ground to develop a more user- friendly and efficient Network

Monitoring System. The authors of the paper published some approaches on
how to accomplish it.

1.4 Target audience
This paper is addressed primarily for administrators and personnel working
with Network Monitoring Systems like Nagios in large IT infrastructures.

The paper could also be of interest for a reader involved or with an interest in
system integration, deployment of software and how to simplify the
distribution in a time efficient manner. Basic Unix / Linux server

administration is recommended.

1.5 Problem
“How is it possible to simplify deployment of agents and management of
services on monitored nodes in a mixed IT infrastructure in a reasonable
time?”

The authors define reasonable time as in “How much more time would it take
to manage and deploy the agents manually?”. Mixed IT infrastructure is

defined as a heterogeneous IT infrastructure with different hardware and
Linux operating systems. The opposite would be a homogenous IT

infrastructure, where everything is identical.

3

2. Theory

The theory section concerns to give the reader basic knowledge to meet the
subsequent sections of this paper. This section treats Network Monitoring,

Content Management System and other related theory.

2.1 Network Monitoring System
2.1.1 Overview
Network Monitoring System, also known as NMS, is used to monitor an IT
environment in order to get information regarding network performance,
security situation, hardware and software status presented within a graphical

web interface. [2, 3] It is also possible to write own plugins for IT
environment specific needs. [2] Todays large IT infrastructures have software

and hardware from a lot of different vendors. By monitoring the hardware
and software of the IT infrastructure it increases the chance of detecting, for
example, a potential disk crash before it affects the IT infrastructure. [3]

2.1.2 Agents
An agent is used on monitored nodes to allow execution of locally available

resources like CPU load, memory and disk usage. The collected data is
pushed back to the Network Monitoring System.[4] There are a few available

agents, both for Windows and Linux. One example for Windows systems is
Nsclient++ and for Linux/Unix systems the most widely used is NRPE
(Nagios Remote Protocol Executor) [6, 7]. Op5 provides an own version of

NRPE to suit an environment with Op5 monitor. [36]

2.1.3 Op5

Op5 is an Open Source Network Monitoring System created in 2003, and
established as the company Op5 AB in early 2004. It is based on Nagios,

initially called NetSaint. Nagios is a world-known Open source monitoring
system launched in 1999. Nagios provides monitoring, alerting, response of
alerts, reporting, scheduling maintenance, planning and many more

functionalities. [5, 6]

Op5 uses the Nagios core combined with three important own-created
solutions: Ninja, Merlin and Nacoma [7, 28]. Ninja is an acronym for Nagios
Is Now Just Awesome and poses Op5’s web interface with the aim to be the

most powerful and useful open source web front end for Nagios [34]. Merlin
is an acronym for Module for Effortless Redundancy and Load balancing in

Nagios and provides Op5 with the database, which works as a backend for
Ninja [35]. Op5 also provides Nacoma, which is a Nagios Configuration
Manager. Nacoma is an Open Source configuration tool for Op5 Monitor,

written in PHP and uses MYSQL as backend. Nacoma provides an easy way
to manage configuration files and propagation of hosts via an API. [28]

4

2.2 Configuration Management System

2.2.1 Overview
A Configuration Management System (CMS) provides a solution for
automating configuration tasks on computer systems. A Configuration

Management System may for example be useful if you would like to create
and configure three identical servers. The packets to be installed are specified

on the Configuration Management System and distributed to the nodes. It
may also be used to distribute script for execution on multiple nodes. [9]

2.2.2 Puppet
Puppet is a Configuration Management System used to automate distribution
of resource configurations across an IT infrastructure. Puppet makes it easy

to automate functions which lead to simplified provision, configuration, and
management of infrastructures throughout its lifecycle. [10] Puppet can run

either in a client-server or stand-alone mode. It has support for managing
Unix, OSX, Linux and Windows platforms. Puppet consists of three
components [15]:

 Deployment

 Configuration Language and Resource Abstraction Layer (RAL)

 Transaction Layer

Deployment - Puppet is mostly used in a client-server mode, where the server

with the Puppet software is called “Puppet master” and the nodes which are
to be managed are called “Puppet nodes”. The communication and
connection between the Puppet master and the nodes are made via an

encrypted and authenticated connection using standard SSL. [15]

Configuration Language - The configuration language Puppet uses is a

declarative language. The declarative language is used to define
configuration items, also called “resources”. A declarative language means

that Puppet makes statements about the state of the configuration, for
example: it declares that the package NRPE should be installed, and the
service NRPE should be started. In this way the administrators who use

Puppet only need to declare how the nodes should be configured regarding
packages and services. Puppet’s work is thereby to make these states to be

achieved. This is done by abstracting the hosts’ configuration into resources.
[15]

If a system administrator does not use a CMS like Puppet he needs to make a
lot of steps for just a simple thing like installing NRPE on five linux nodes,

each with a different operating system. The system administrator first needs
to connect to the required host, make a check to see if NRPE is installed. If it
is not, the system administrator needs to use the appropriate command for the

5

current platform to install NRPE. As a last thing to do the system
administrator checks if it all went well. These steps will be easier and less
time consuming by using Puppet. The only thing the system administrator

needs to configure, besides installing the puppet agents on the nodes and
some minor puppet configurations, is the code presented in Code 2.2.2.1. [15]

1. package { "NRPE":
2. ensure => present,
3. }

Code 2.2.2.1 - Code to make sure the package NRPE is installed

A Puppet resource begins with a type (packages, services, cron jobs, mount

etc.), which declares the sort of resource that is being managed. Afterwards a
series of attributes are specified which for example makes it possible to check

if a service is running or not. An example of a resource construction is shown
in Code 2.2.2.2. [15]

1. type { title:
2. attribute => value,
3. }

Code 2.2.2.2 - A Puppet resource construction

To use Puppet as it should be used modules and classes are the right way to
go. Modules are reusable code and data which can easily be loaded into files

like the manifest file site.pp. In the modules classes should be used to
structure the code. The flow control is a lot easier if classes are used. Classes

are a collection of resources like Code 2.2.2.1 which Puppet can apply as an
unit. [29]

RAL - When a resource is created by the system administrator, Puppet takes
care of the rest when the nodes connect. By knowing how different platforms

and operating systems manage certain types of resources, Puppet makes the
configuration, administration and installation. This is possible by different
providers of the “type”. If the type is specified as package there are more than

20 providers like yum, aptitude, pkgadd, port and emerge. To decide which
provider to use Puppet uses Facter. Facter is a tool that returns information

about the node, for example what Operating System it is running. On the
basis of the information from Facter, Puppet chooses the correct package
provider, for example aptitude for Ubuntu and other Debian based

distributions or yum for Redhat Enterprise Linux based distributions like
Centos and Fedora. If the package is already installed, Puppet will not do

anything. If it is not installed Puppet will install the package. [15]

Transactional Layer - Puppet describes the Transactional Layer as the engine.

6

It covers the process of configuring each host, operations like interpret and
compile the system administrations configuration, send the compiled
configuration to the agents, apply the configuration on the agents and report

the results to the Puppet master. [15]

2.3 Other theory
2.3.1 Open source
Open Source is referring to “Free” software. Free should be read as free as in
freedom, not “for free”. Programs that are licensed under an Open Source

license are free to use, modify and redistribute. [17]

2.3.2 Vmware Esxi

Vmware Esxi is a bare-metal hypervisor which makes it possible to run
multiple virtual machines on a single set of hardware. Esxi is built to require

minimal configuration and to be up and running in just a couple of minutes.
[14]

2.3.4 Network File System

Network File System (NFS) allows remote hosts to mount file systems over
the network and interact with those systems as though they are mounted

locally. This enables system administrators to consolidate resources on
centralized servers on the network. [18]

2.3.5 Graphical User Interface
A Graphical User Interface (GUI) displays graphical components for a user.

The graphical components depend on the user’s requested information. The
user can mostly interpret with the GUI and for example add, change and
delete objects. [25]

7

3. Method
The method section presents the scientific approach, implementation and
reliability. The scientific approach presents the methods to be used for the

implementation. The implementation section presents how the solution is
being developed and how it is implemented in the test environment. The
method section also explains details that may affect the result and its

reliability.

3.1 Scientific approach
The authors of this paper used a mixed method. By using a qualitative approach data

is derived from empiricism and accordingly is able to draw conclusions on how it is
possible to simplify management and deployment of agents and services on
monitored nodes in a mixed IT infrastructure. By using a quantitative approach the

authors measured the outcome of the produced solution. [16]

The authors intended to use an inductive and a deductive approach. The

inductive approach refers to create theory from observations and results. The
observations that have been made showed that management and deployment

of agents are a time consuming chore. By using this theory, the authors
pertained to use a deductive approach to bring forward a method to simplify
the administration of agents in Nagios based Network Monitoring Systems.

The deductive approach aims to draw conclusions from observations
regarding the time consumption. [37]

3.3 Implementation
3.3.1 Lab environment
To be able to perform the test, a lab environment was set up, presented as a

topology in Figure 3.3.1.1.

8

Figure 3.3.1.1 - Topology of the lab environment

The monitored nodes were run virtually since it would otherwise be required

to have access to a much larger amount of physical hardware. The virtual
machines were run on two unclustered Vmware Esxi 5.1 machines with 9GB
of RAM each. The virtual machines are presented in Figure 3.3.1.2.

Figure 3.3.1.2 - Virtual machines

The virtual nodes consisted of a total of 20 machines. These machines ran
Centos 6.4. The amount of RAM for each node was limited to 512 MB. One

9

of the Esxi machines also hosted a DNS server running Ubuntu 12.10 with
Bind9 and another machine running Centos 6.4 hosting the Puppet master.
These two machines had 1GB of RAM each. The DNS server was configured

with DNS records for all the nodes and other devices in the test environment.

As mentioned in the introduction section of this paper, the work was done in
collaboration with Op5 AB. Accordingly, the choice of the NMS was their
monitoring software called Op5 monitor. By the time of writing the latest

version was 6.07 which is built on Nagios Core 4. [11] The Op5 monitor
server was run on a physical machine with 2GB of RAM. There was a

physical file server with 2GB of RAM. The file server contained the files to
be distributed to all nodes with Puppet configured. The file server also
contained one file which the nodes wrote their hostnames to when they were

done and the directory /archived_services_and_hosts/ with the purpose to
store and archive previous runs. The file server used Centos 6.4 and exported

the files via NFS.

3.3.2 Flow chart
The flow chart, presented in Figure 3.3.2.1, served as a model of how the
whole solution was meant to work. It began with an user input via the GUI of
the NMS. The input contained information regarding which nodes should be

configured with agents and which services should be added and configured
on the nodes. The input was also used by the NMS to add the nodes to the

GUI and to add the services to those nodes.

The information regarding nodes and services were stored in two files which

the Puppet had a subscription to. Namely if the file existed Puppet should
execute the modules on the Puppet nodes. One text file contained the

hostnames for the nodes, and the other text file contained the services to be
added or changed. If a new service was added, the script for the service
should be uploaded too. These three files; hostnames, services and the script,

were uploaded by the GUI to a file server located in the environment.

Puppet had the role to contribute with modules which contained tasks

(classes), such as to ensure the file server was mounted, scripts were
executed, automated the distribution or configured the agents. The NMS had

a module on the Puppet master for the tasks it was expected to do. Figure
3.3.2.1 presents the flow chart of the solution in four easy steps. A short
explanation of the steps may be seen to the left of the figure.

10

1. User input - indicates nodes and
 services to be changed or added.

2. Modules execution - Execute
 scripts etc. on the NMS and

 nodes.

3. The nodes sends monitoring-

 data to the NMS.

4. The NMS presents the data
 on the GUI.

Figure 3.3.2.1 – Flow chart

3.3.3 Test suite
The test suite was composed by a total of three tests. One baseline test and

two tests in order to stress test the solution presented by the authors. The
solution was measured against the baseline test regarding time consumption.

The baseline test had a major reliance on the person performing it, but was
meant to work as a comparison to the authors’ presented solution. The
baseline test was performed two times by the authors and an average value is

presented. Major differences are discussed and analyzed. The steps are
presented in Table 3.3.3.1.

Test description

1. Install NMS Agent on 10 nodes.

2. Add hosts to the NMS via the GUI with services included.

3. Add a specified new service for 10 nodes.

4. Add one new service to the NMS GUI.

5. Change a specified service for 10 nodes.

Table 3.3.3.1 - Baseline test suite

The automated solution tests is presented in Table 3.3.3.2 and consisted of
the same steps as presented in Table 3.3.3.1, but some of the steps were

merged due to the functionality of the automated solution. Each test was

11

performed three times and an average value is presented. Major differences
are discussed and analyzed. To be able to see the difference an additional test
was performed with 20 nodes. By performing the third and last test the

authors strived to show the amount of nodes do not result in a linear increase
in time consumption and may thereby demonstrate the scalability of the

solution.

Test description

1. Install NMS Agent on 10 or 20 nodes and add hosts to the NMS
including with specified services.

2. Add a specified new service for 10 or 20 nodes and add it to the NMS
GUI.

3. Change a specified service for 10 or 20 nodes.

Table 3.3.3.2 - Automated test suite

3.4 Reliability
As mentioned in section 3.3.1 Test environment, the monitored nodes and the

Puppet master were running as virtual machines. This fact should not affect
the outcome of the tests. Since Bash is available on most Linux and Unix
based operating systems the authors chose this as the only script language for

the Linux nodes [21]. The Linux distribution of choice on the nodes was as
mentioned in 3.3.1 Test environment, namely Centos 6.4. This meant that the

default package manager was yum which handles rpm packages [24]. This
was specified in the Puppet configuration. Which means if the reader intends
to use a non “rpm based” distribution, some modification will be required.

Due to time constraints this was not covered in this paper. It is possible to use
variables in Puppet, and thereby simplify and make the Puppet configuration

more general [30]. But due to time constraints the authors have chosen not to
implement it.

In comparison between the three Configuration Management Systems Chef,
CFengine and Puppet, [12] found out that Puppet has by far the largest user
community. According to [12] Puppet also has a very powerful language with

the ability to make configurations with little effort. It also stated that Puppet’s
documentation has a good structure. Based on [12] and the fact that Puppet is

an Open Source software that has support for all the major operating systems
and architectures [13], the authors of this paper have chosen Puppet as the
CMS.

12

The authors are aware that if an administrator were managing a large IT
environment, a manual method would probably not be considered. The
administrator would most likely go with writing an own script or to use an

existing solution to propagate the changes to the nodes. To manage all this
through one straightforward user interface as in the presented solution in this

paper could still be considered convenient.

The timing during the tests was done manually using a stopwatch. The timing

began as the activities specified in section 3.3.3 Test suite begun. The timing
was stopped when all of the nodes had got the specified agent, service or

changed parameters and after the results had been verified in the NMS. The
purpose of the timing was to see differences between the baseline and the
solution presented in this paper. The timing was also used to present how the

solution’s scalability is, as presented in section 3.3.3 Test suite.

In section 1.5 Problem the authors presented the problem of this paper and
claimed a mixed IT infrastructure would be used. But since all of the nodes
were executed in virtual machines, the IT infrastructure could not be

considered to be “mixed” as far as hardware is concerned. The authors do not
believe the results would be any different with different hardware. The

solution is most likely not being completely compatible with other Linux
distributions. But the authors of this paper do not see that as a big problem
because the configuration to change should not be complicated. When

comparing Linux distributions some of the main differences for this paper’s
solution are the package provider, Selinux availability and NRPE for Op5
directory path.

13

4. Result
In this section the results that have come to light of the analyses performed in
the earlier chapter is presented.

4.1 WEB GUI
The authors have created a widget, presented in Figure 4.1.1, for Op5’s web
based Graphical User Interface called Ninja. The widget is written in HTML

and PHP1 and strives to give the user a more user friendly experience while
deploying agents and managing services. From the user’s point of view, the
widget shows three form boxes which ask the user to upload files to the

shared storage. The upload location and purpose is specified in Table 4.1.1.
The “Hostnames” field prompts the user to upload a file specifying which

nodes the chosen services affect. “Add and / or change service” prompt the
user to upload a file specifying which services to add or change on the nodes
from the previous upload function.

The last field, “Upload new script (opt)” prompts the user to upload a new

script. This field gives the user an opportunity to add a new script to all of the
specified nodes. The script’s service-command and arguments should of
course then be specified in the file containing the services. After the user has

pressed submit the PHP script echoes if the file upload was accepted or
denied depending on the file type and file size. It also echoes the destination

of the files and furthermore the progress. The question mark on top of the
fields gives the user an example configuration of what information is
expected in each field.

1
 Attachment A - WEB GUI

14

Figure 4.1.1 - Widget for op5

Form name Format Location

Hostnames linuxnode1.example.com
randomcomputer2.example.com

Should be specified in .txt no larger than 20kB.

/mnt/upload/hosts_op5.txt

Add and / or

change service

command[check_file_size]=/opt/plugins/check_file_size.sh --maxwarn
1000000000 --maxcrit 2000000000 /tmp

Should be specified in .txt and no larger than
20kB.

/mnt/upload/checks.txt

Upload new
script (opt)

check_example.sh

Should be specified in script file and no larger

than 20kB.

/mnt/scripts/check_examp
le.sh

Table 4.1.1 - Web GUI

15

4.2 Puppet
Puppet has been configured with three modules. Table 4.2.1 presents the
different modules and a short description. One module is called
“puppet_script”. The module executes a script, which will add the specified

nodes from the uploaded file to the Puppet configuration file. The nodes will
there have module “NRPE” included. The task for this module is to ensure

NRPE is installed on the nodes specified in the uploaded file and the services
specified in checks.txt is added or changed. The module “puppet_script” also
triggers a script to clean and remove temporary changes and files created

during the run.

The module “NRPE“ ensures that the file server is mounted properly. The
module will install any missing dependencies for NRPE, install NRPE and
apply the NMS as an “allowed_hosts” under the NRPE configuration file.

The service NRPE will be restarted when it is done. The module also has the
mission to execute a script to add and change services locally to the specified

nodes. The services information are gathered from the input specified in the
file uploaded from the WEB GUI.

The module for the NMS is called “monitor_script” and will trigger a script
containing bash code that uses Nacoma, to add hosts and corresponding

services.

16

Table 4.2.1 - Overview of Puppet modules

1
 Note: The execution of scripts in a module is not done right away, it is executed on the next puppet run.

Name Files

Nodes Description

Attachment

puppet_script manifests/init.pp
files/add_nodes_puppet.
sh

files/remove_nodes_pup
pet.sh

Puppet If the file hosts_op5.txt exists the module executes the script
add_nodes_puppet.sh which adds nodes to the puppet
configuration file (site.pp). It also executes the script

remove_puppet.sh when the file /mnt/done.txt1 is changed.

B - manifest for
puppet_script

NRPE manifests/init.pp

files/add_check_on_nod
es.sh

Linux Ensures that the fileserver is mounted. Installs NRPE, and its

dependencies, from a package accessible from the file server.
Allows communication from NMS to the node via NRPE and
then restarts the service NRPE. Run script to add new, or change

existing, services in NRPE if the file /mnt/upload/checks.txt1
exists.

C - manifest for

NRPE

monitor_script manifests/init.pp

files/add_hosts.sh
files/add_services_linux

.sh

NMS Run script to add new hosts to the NMS if the file hosts_op5.txt

exist, and add the specified services in checks.txt to these hosts,
if checks.txt1 exists.

D - manifest for

monitor_script

17

4.3 Scripts
Several scripts have been written to contribute with tasks which Puppet is not
capable of producing, or in cases where a script is more suitable. Figure 4.3.1
presents all scripts and relationships with different files.

Figure 4.3.1- Script overview

4.3.1 Add check on nodes (add_check_on_nodes.sh)

1

The nodes add the services to the NRPE configuration by taking the services
specified in the uploaded file checks.txt, presented in Table 4.1.1 - Web GUI.

The script checks those services against the already existing ones, in Op5’s
NRPE version located in /etc/nrpe.d/op5_commands.cfg. If a service already
is present but with new arguments the service is replaced with the new

arguments specified in checks.txt.

The script also checks if a file was uploaded to /mnt/scripts/. If it is a file
uploaded to the location, the script extracts the filename of it and copies it to
/opt/plugins/<filename.fileextension>. The script also makes it executable. If

new services have been added or old ones changed, the script restarts the
NRPE service. As a last thing to do, the script checks whether all services

have been added or not. If all services are present, the hostname of the node
is echoed to the file /mnt/done.txt. Which is later used by the script,
remove_nodes_puppet.sh.

4.3.2 Add hosts (add_hosts.sh)

2

Add_hosts.sh simply adds hosts to the NMS from the file hosts_op5.txt

which the WEB GUI has uploaded to the file server. The script checks if the
hosts already exist or not. The existing hosts are read from

/opt/monitor/etc/hosts.cfg and are saved in a variable, which is compared to
the hosts specified in hosts_op5.txt. If the new hosts are not existing ones,

1
 Attachment E – Add check on nodes

2
 Attachment F – Add hosts

18

they will be added via Nacoma. If new hosts have been added the save
command will be executed for the Op5 monitor.

4.3.3 Add services linux (add_services_linux.sh)
1

The script reads the file hosts_op5.txt and checks.txt. For each node, the

script adds the services specified in checks.txt to the node in the WEB GUI,
if they are not already present. The script also adds the two standard services
check_ping and check_ssh, if they do not exist. At last everything is saved if

changes have occurred.

4.3.4 Add nodes puppet (add_nodes_puppet.sh)
2

Add nodes from the file hosts_op5.txt to site.pp. The script checks if the node
is already present in the configuration file for Puppet. If it is not present, the

node will be added to the file with the module “NRPE” included. This script
is triggered by the existence of the file hosts_op5.txt via Puppet.

4.3.5 Remove nodes puppet (remove_nodes_puppet.sh)

3

The script removes nodes from site.pp when /mnt/done.txt consists of every

hostname specified in hosts_op5.txt. This means that all nodes are done and
have run the module “NRPE” including the scripts. The script moves the files
hosts_op5.txt and checks.txt to

/mnt/archived_services_and_hosts/<filename_date_and_time_of_the_move>,
and then it deletes every hostname in /mnt/done.txt. If a script was uploaded

it will also be deleted. When the hostnames are deleted from /mnt/done.txt by
this script, the created solution has done its job and everything should be
configured and presented nicely on the GUI for the NMS.

4.4 Test results
The test results from the test suite specified under section 3.3.3 Test Suite are

presented in Table 4.4.1 which shows the average time it took for each of the
specified tests to complete. Some of the tests were not possible to perform
since the automated tests do this in a flow. These are shown in Table 4.4.1

with an asterix. Figure 4.4.1 aims give the reader a more visual overview of
the test results.

1
 Attachment G – Add services linux

2
 Attachment H – Add nodes puppet

3
 Attachment I – Remove nodes puppet

19

Test Man. 10 nodes (min) Aut. 10 nodes

(min)

Aut. 20

nodes (min)

Install and configure agent 11.23 04.44 06.01

Add standard services for NRPE,
PING and SSH in GUI.

07.40 *1 *2

Add one new service on nodes 10.31 04.59 04.37

Add one new service to the GUI 20.43 *3 *4

Change a parameter for a service 03.44 04.03 04.39

Total time (avg.) 54.01 13.46 15,17

Table 4.4.1 - Test results

Figure 4.4.1 - Test results

1
 This step was done during the “Install and configuration agent”-step for the

automated solution.
2
 This step was done during the “Install and configuration agent”-step for the

automated solution.
3
 This step was done during the “Add one new check on nodes”-step for the

automated solution.
4
 This step was done during the “Add one new check on nodes”-step for the

automated solution.

20

4.5 Overview
To fully understand the relationships and dependencies between all parts of

the automated solution the authors have created Figure 4.5.1 to make this
more visual to the reader. The figure will be broken down and described step

by step during this section.

Figure 4.5.1 - Relationships and dependencies

1. Figure 4.5.2 shows that files are uploaded to the file server.

Figure 4.5.2 - Step 1

2. Puppet master and Op5 monitor notice the uploaded files via the

modules on the Puppet master and the scripts on those two are being

triggered. See Figure 4.5.3 and Code 4.5.1.

21

Figure 4.5.3 - Step 2

5. $script1 = '/usr/local/bin/add_nodes_puppet.sh'
6. $script1source = 'puppet:///modules/puppet_script/add_nodes_puppet.s

h'

22. class puppet_script::add_nodes inherits puppet_script
23. {
24. file {$script1:
25. source => $script1source,
26. mode => '755'
27. }
28.
29. exec {$script1:
30. require => File[$script1],
31. onlyif => 'test -f /mnt/upload/hosts_op5.txt'
32. }
33. }

Code 4.5.1 –Trigger scripts

3. Puppet master adds the hostnames specified in hosts_op5.txt to the
site.pp as node definitions, including the module NRPE. Op5 monitor
adds the hosts if they do not exist, and add services to the specified

hosts in the GUI. See Figure 4.5.4 and Code 4.5.2.

Figure 4.5.4 - Step 3

30. #If exist_value is greather then 0 it means that the node is already

 present.
31. if [$exist_value -gt 0];
32. then
33. echo "Node $node already exist."
34. #Or if exist_value is equal to 0 it means that the node is not prese

nt and should then be added to site.pp.
35. elif [$exist_value -eq 0];
36. then

22

37. echo "Node $node added."
38. echo "$node_full" >> /etc/puppet/manifests/site.pp
39. fi

Code 4.5.2 – Add node definitions to site.pp

4. The nodes check via the Puppet agent if there are any definition for

the specific node (in site.pp), which it is by now. See figure 4.5.5.

Figure 4.5.5 - Step 4

5. The nodes pull down the configurations from the module “NRPE”

and execute it. See Figure 4.5.6.

Figure 4.5.6 - Step 5

6. Figure 4.5.7 shows the scripts to be executed on the nodes. It uses
checks.txt to add those services to the node1. It copies the script file

and makes it executable if a script file is uploaded, see Code 4.5.3.

1
 Attachment E – Add check on nodes

23

Figure 4.5.7 - Step 6

76. #Add new script-file to local storage for the NRPE-scripts.

77. script_name=`ls /mnt/scripts/`
78. if [-z ”$script_name”];
79. then
80. echo “No script to upload.”
81. else
82. cp “/mnt/scripts/$script_name” /opt/plugins/

83. chmod +x /opt/plugins/”$script_name”
84. fi

Code 4.5.3 – Copy script file and makes it executable.

7. When a node has finished the script the node echoes its hostname to

/mnt/done.txt. See Figure 4.5.8 and line 97-133.1

Figure 4.5.8 - Step 7

1
 Attachment E – Add check on nodes

24

8. When done.txt has all the same hostnames as in hosts_op5.txt the
Puppet master moves checks.txt and hosts_op5.txt. It also deletes the
script file. The filename of checks.txt and hosts_op5.txt are added

with the current date and time. See Figure 4.5.9, Figure 4.5.10 and
Attachment I – Remove nodes puppet.

Figure 4.5.9 - Step 8

Figure 4.5.10 - Step 8

9. When those files are removed, the Puppet master clears /mnt/done.txt
as can be seen in Figure 4.5.10 and Code 4.5.4.

Figure 4.5.10 - Step 9

44. # For every node in done.txt, remove it from site.pp and then done.t
xt.

45. while read node
46. do
47. node_full="node '$node' { include nrpe }"
48. sed -i "/$node_full/d" /etc/puppet/manifests/site.pp
49. sed -i "/$node/d" /mnt/done.txt
50. done < /mnt/done.txt

Code 4.5.4 – Remove nodes from site.pp.

25

5. Discussion
The discussion section presents the authors analysis regarding the results and
the implementation of this paper. This section consists of discussions

regarding the WEB GUI, created scripts, Puppet with its modules, the test
results and other related discussions.

5.1 WEB GUI
The widget is, as stated in section 4.1 WEB GUI, written in HTML and PHP.
The upload function consist of a basic PHP upload script, modified to fit this
paper’s IT environment.

Since the widget is created in HTML and PHP it should not be any problem

to migrate the widget to another NMS and its GUI. There are some
parameters that need configuration to fully function if the widget is to be
placed in a new environment, such as path for pictures and to the file server.

Another solution would be to integrate Ninja because the widget is tested and
fully functional during these circumstances. The authors are aware of the

problem concerning no error handling when uploading files. It is by the time
of writing possible to upload a script without specifying any hostnames nor
services, or vice versa. This means if the user has uploaded several scripts

and then uploads a checks.txt containing these scripts commands and
parameters, it will probably not work because the script on the nodes cannot

fetch a single filename in the script path.

By installing the widget, the NMS enables a way to interact with monitored

nodes in a way that was not possible before. A possible security risk occurs if
an intruder gets access to the NMS. The intruder could then upload a file via

the “Upload new script (opt)” field and specify a number of hosts in the
“Hostnames” field and thereby deploy the script to the specified nodes. This
requires that the intruder is aware of some hostnames in the environment to

which the script should be uploaded to.

The configuration to present the “work in progress”-text could indeed be
configured in a more user friendly and correct way. The current solution
requires the user to update the widget page. The widget echoes the file

/mnt/done.txt. At first it will echo nothing, because the file is empty. But
when nodes have run their modules and script they echo their hostnames to

done.txt, which is then echoed to the widget page. When all hostnames are
present in done.txt the Puppet master will clear the file, which will result in
an empty “work in progress” once again on the widget page. By now

everything should be converged.

26

A more proper solution for this would be to use some kind of visualization to
make it more user friendly and understanding. A progress bar which loads
depending on amount of finished hosts, and a text which updates and writes

the current finished host(s).

By the time of writing the files to be uploaded in the “Hostnames”- and “Add
and / or change service”-field must be named as in Table 4.1.1 – Web GUI.

5.2 Puppet
The Puppet agent must be installed either manually or by some other
deployment software. In the scenario presented in section 3.3.1 Test

Environment, the authors used a template to deploy the new machines. On the
template the puppet agent was installed, all that had to be done was to accept
the certificate request on the Puppet master after cloning. The automated

solution does not automatically accept requested certificates by the Puppet
nodes. The reason for not implementing a function to accept requested

certificates is because Puppet labs do not recommend doing so. [32] If you
would create a function to automatically accept requested certificates you
would not have the same control of the accepted nodes. Regarding automatic

solutions and for information, please read Puppet Labs page about it in [32].

One of the limitations of Puppet is that the ability to “push” updates to the
nodes is considered deprecated and has been withdrawn [26]. Instead the user
is limited to use “pull” from the nodes. By default this update occurs every 30

minutes. By specifying the runinterval parameter in puppet.conf, it is
possible to update more frequently. [23] In the test scenario of this paper a

runinterval of 120 seconds was configured.1 This value should be adjusted to
the specific environment. In a large environment it could be possible that if
too many of the nodes connect to the Puppet master at the same time, it could

be overloaded in what could be considered a Distributed Denial of Service
(DDoS).

If the Puppet master is running slowly, it should be considered to configure a
higher runinterval. If the runinterval is changed to a lower value on the

Puppet master, NMS and nodes, the time to complete the automated solution
is most likely lower than what the results in Table 4.4.1 - Test results and

Figure 4.4.1 - Test results presents. This is due to the fact that the Puppet
master will trigger faster on the uploaded file, and so will the NMS. The
nodes will check more frequently if a node definition is available in site.pp

and thereby run the module “NRPE” earlier than during the tests in this
paper.

1
 Attachment J - Puppet code for runinterval and usecacheonfailure

27

There are some static configurations in the puppet modules which should be
removed and replaced by variables. The modules would be more user
friendly if variables were used. But due to time constraints the authors of this

paper did not have the time to modify it before handling in this paper.
However, the modules are available at Github1, and may be updated.

The authors encountered a problem regarding caching of the Puppet
configuration. While adding some services for only a few nodes, for testing

purpose, the remaining nodes ran their old scripts which had been cached.
They triggered due to the files were uploaded, and because they did not find

any definition for them in site.pp. The solution to this was to disable Puppet
to use the cache on a failure of finding a node definition [33]. This was done
by a class for all nodes by defining a “node default” which applies to all

nodes.2

There are some security issues to be concerned about regarding the
automated solution for Puppet. There is no control on what the script contains
that are executed on every node, pulled from the Puppet master’s modules. If

an intruder manage to get into the Puppet master and is able to exchange the
scripts it could mean a large security risk.

5.3 Scripts
The authors have created five scripts during the work of this paper. Each
script is presented in section 4.3 Scripts. Each script is triggered by Puppet if

a state is achieved, mostly if a file exists. This combination is the key to the
automated solution. If the files containing the services and the hostnames are

uploaded, the Puppet agent for the NMS triggers the script to be run. The
scripts use the Nacoma API to modify configuration files on the NMS.

There are some static configurations in the scripts which need to be changed
to variables before applying the solution in a new environment. But due to

time constraints the author’s did not have time to correct it. But the scripts are
available at Github¹, and may thereby be updated later on.

5.4 Test results
It is a very time consuming task to perform these activities manually, as can
be seen in Figure 4.4.1 – Test results. But it also increases the risk of human
errors. Mistypes and forgotten activities, that leads to errors and

troubleshooting. In the baseline test, performed by the authors, a lot of small
errors had to be corrected which was added to the time. The test results

presented for the baseline test is the actual time spent to perform the specified

1
 https://github.com/jesajah/rosi

2
 Attachment J - Puppet code for runinterval and usecacheonfailure

28

activities. For the automated tests the duration was not only lower, the actual
time that involved human interaction was almost non-existent. The only steps
the authors did were the once you are supposed to do when using this paper’s

solution: choose two or three files to upload through the GUI and then click
“submit”. After that the only thing to do is to wait.

The full durations of the tests were remarkably lower than the manual test. In
two of the performed tests ten nodes were used and as these tests scale up,

there should be a greater risk of human errors during a manual performance
and the time spent should increase linearly [27]. The time spent is not linear

when the automated solution is used, as Figure 4.4.1 – Test results and Table
4.4.1 – Test results, clearly shows. The scalability for the automated solution
is good according to this result. But, as stated before, due to hardware

shortage the authors of this paper have not tried the automated solution with a
larger amount of nodes than 20 to see if the scalability is different with

hundreds of nodes.

The time-span varied between ~02:56 to ~06:34 for the different steps,

presented in Table 4.4.1 – Test results. This time-span depends on the
runinterval for the Puppet agent on the nodes, NMS and the Puppet master.

Let’s say the user uploads the files ten seconds after the Puppet master’s
Puppet agent has executed. The user will then need to wait approximately 1
minute and 50 seconds before the Puppet master will execute again and do

the first step on the automated solution. This given that the runinterval on the
Puppet agents are set to 120 seconds as in the test environment of this paper.

The nodes may run when the Puppet master has done the first step, which
imply adding the node definitions to site.pp. But this may take up to one

runinterval. Let’s say the Puppet master adds the node definitions to the
site.pp just after a node checks whether there are any Puppet configurations

for the node or not. Which it will not be because the Puppet master has not
added any of the nodes to the site.pp yet. The node has to wait for almost two
minutes before noticing the Puppet configurations to be run. Imagine this

scenario for 100 nodes. The more nodes added, the more likely a node times
the runinterval badly and the more likely the time lands in the upper time-

span presented in the previous paragraph.

5.5 Other discussions
The solution has not been packed for distribution to other systems by the time

of writing. Some of the variables in the code are “hard coded” for the test
environment and should be changed for a more general approach. But as

29

mentioned in section 5.3 Scripts the code is published on Github1 and may
thereby be updated later on.

A problem occurred while the authors made the tests for the automated
solution. The checks.txt and hosts_op5.txt were corrupted if they were

opened on a Windows machine. The solution to the problem was to only
open and modify the files in Linux. A possible reason of the problem is that
newlines are represented by “̂ M” in Windows and “\n” in Unix like systems.

There are programs like [31] whose task is to convert text files from
Windows to Unix style. But none of which the authors have implemented or

tested to suit the presented solution.

1
 https://github.com/jesajah/rosi

30

6. Conclusion
This paper presents a way to simplify deployment and management of agents
for Network Monitoring Systems on Linux distributions. To resubmit the

purpose and the problem presented in this paper:

 “How is it possible to simplify management and deployment of agents and

services on monitored nodes in a mixed IT infrastructure in a reasonable
time?”

This paper began with an introduction of the problem, the target audience and
the public good it would have on system administrators in the business. The

authors of this paper then presented a method on how they think this is
possible. By integrating a Content Management System with the Network

Monitoring System and develop an easy to use Web based Graphical User
Interface the authors present one way to simplify management and
deployment of agents. The advantages and disadvantages with an automated

solution compared to manual administration are discussed. What the reader
considers reasonable time is of course very individual, but is here specified as
the time it would take for a system administrator to manually perform the

chosen activities. These manual activities are presented as a baseline for
comparison with the automated solution. The presented solution has been

made more easy to use through an integrated widget in the Network
Monitoring System. The solution consists of Puppet, a Content Management
System, with some modules with different tasks.

Imagine an IT environment with 650 nodes, everything from webservers to a

large clustered render farm. No one would like to manually install a Network
Monitoring System agent on all those nodes. A system administrator would
probably script a solution to install the Network Monitoring System agent on

all nodes. Another system administrator might consider using a Content
Management System like Puppet. Either way would probably take a lot of

time to complete. When the nodes have the agent installed the Network
Monitoring System still needs to be configured to monitor all those nodes,
either manually add all nodes via the graphical user interface or the command

line, or by using an Application Programming Interface (API), if it is
available for the chosen Network Monitoring System. These solutions would

most probably take a lot of time to finish. And what if all these nodes need a
new service? The administrator then needs to connect to each node and add
the service and add it to all nodes via the Network Monitor System graphical

user interface or API.

With the solution presented in this paper deployment, configuration and
management of agents for Network Monitoring System are a lot more user

31

friendly and it takes only a few minutes to distribute the agents and services,
including adding the nodes to the Network Monitoring System’s graphical
user interface. By combining Puppet with several of scripts created by the

authors of this paper the deployment and management of Network
Monitoring System agents are made in a reasonable time. The solution does

also include configuration on the Network Monitoring System. The solution
adds hosts and the services to the Network Monitoring System. It also adds,
or changes, the services on the nodes (hosts). The solution has been

integrated with the Network Monitoring System Op5’s graphical user
interface via a widget to simplify the usability of the solution.

6.1 Further research
The authors believe that a deeper analysis of the security aspects would be
necessary before implementing the solution in a production environment.

This paper only treats management and distribution of Network Monitoring

Agents on Centos. The authors hope that further researchers investigate the
possibility to port the solution to other Linux distributions and Windows
platforms. The authors have discussed the most vital configurations that need

to be changed before implementing the solution on other Linux distributions.
As mentioned in earlier sections, the code may be updated by the use of

Github.1

1
 https://github.com/jesajah/rosi

32

References
[1] C. Armas, “Puppet: Ruby-based Server Management Automation

Suite”, 2010, [Online]. Available:

http://www.infoq.com/news/2010/02/puppet-25 [Accessed: May
24, 2013]

[2] C. H. Richard, "Network management with Nagios," Linux J., vol.
2003, p. 3, 2003.

[3] F. Engel, K. S. Jones, K. Robertson, D. M. Thompson, and G.

White, "Network monitoring," ed: Google Patents, 2000

[4] J. G. Ochin, "NETWORK MONITORING SYSTEM TOOLS: AN

EXPLORATORY APPROACH.", UACEE International Journal
of Advances in Computer Networks and Security, Manav Rachna
International University

[5] Nagios, [Online]. Available: http://http:/www.nagios.com.

[Accessed: April 8, 2013]

[6] Op5 AB, “Company History”, [Online].

Available:http://www.op5.com/about/about-op5/company-history/.
[Accessed: April 8, 2013]

[7] Op5 AB, “Nagios Based Monitoring", [Online]. Available:

http://www.op5.com/op5-features/nagios-based-monitoring/
[Accessed: April 8, 2013]

[8] Anonymous, "Cisco Global Cloud Index: Forecast and
Methodology, 2011–2016," ed: Cisco Systems, 2012.

[9] T. Delaet and W. Joosen, "Survey of configuration management

tools," 2007.

[10] Puppet-Labs, "Configuration Management", [Online]. Available:

https://puppetlabs.com/solutions/configuration-management/
[Accessed: April 8, 2013]

[11] Op5 AB, [Online]. Available: http://www.op5.com/release-

notes/op5-monitor-6-0-release-notes/ [Accessed: May 22, 2013]

[12] Önnberg F. Software Configuration Management : A comparison

of Chef, CFEngine and Puppet. 2012.

33

[13] Puppet Labs, “Supported Platforms”, [Online].
http://docs.puppetlabs.com/guides/platforms.html [Accessed: May

21, 2013]

[14] VMware, “”VMware vSphere Hypervisor”, [Online]. Available:

http://www.vmware.com/products/vsphere-
hypervisor/overview.html [Accessed: May 21, 2013]

[15] J. Turnbull and J. McCune, Pro Puppet: Apress, 2011.

[16] A. Bryman, Social research methods, 3. ed. Oxford: Oxford
University Press, 2008. ch. 25

[17] B. Perens, "The open source definition," Open sources: voices from

the open source revolution, pp. 171-85, 1999

[18] CentOS Doc, “Chapter 18. Network File System (NFS)”, [Online].
Available: http://www.centos.org/docs/5/html/Deployment_Guide-

en-US/ch-nfs.html [Accessed: May 21, 2013]

[19] V. Hendrix, D. Benjamin, and Y. Yao, "Scientific Cluster
Deployment and Recovery–Using puppet to simplify cluster

management," in Journal of Physics: Conference Series, 2012, p.
042027

[20] C. Issariyapat, P. Pongpaibool, S. Mongkolluksame, and K.
Meesublak, "Using Nagios as a groundwork for developing a better
network monitoring system," in Technology Management for

Emerging Technologies (PICMET), 2012 Proceedings of PICMET
'12:, 2012, pp. 2771-7

[21] GNU, “GNU Bash”, [Online]. Available:
http://www.gnu.org/software/bash/bash.html [Accessed: May 21,
2013]

[22] K. Adam, "Puppet and nagios: a roadmap to advanced
configuration," Linux J., vol. 2012, p. 3, 2012

[23] Puppet labs, “Overview”, [Online]. Available:
http://docs.puppetlabs.com/pe/2.8/puppet_overview.html
[Accessed: May 21, 2013]

[24] P. Schaffner, “Yum”, 2011, [Online]. Available:
http://wiki.centos.org/PackageManagement/Yum [Accessed: May

34

21, 2013]

[25] Google Patent, “WO 2009044138 A2”, [Online]. Available:
http://www.google.com/patents/WO2009044138A2?cl=en

[Accessed: May 22, 2013]

[26] Eric Sorenson, “Bug #15735”, [Online]. Available:

http://links.puppetlabs.com/puppet-kick-deprecation [Accessed:
May 21, 2013]

[27] D. A. Norman, "Design rules based on analyses of human error,"

Commun. ACM, vol. 26, pp. 254-8, 1983.

[28] Op5 AB, “Nacoma - Nagios Configuration Manager”, [Online].

Available: http://www.op5.org/community/projects/nacoma
[Accessed: May 21, 2013]

[29] Op5 AB, “Learning - Modules 1” [Online]. Available:

http://docs.puppetlabs.com/learning/modules1.html [Accessed:
May 21, 2013]

[30] Op5 AB, “Learning - Variables, Conditionals and Facts” [Online].
Available: http://docs.puppetlabs.com/learning/variables.html
[Accessed: May 21, 2013]l

[31] M. G. Sobell, A practical guide to Linux: Addison-Wesley
Longman Publishing Co., Inc., 1997. p. 55

[32] Puppet labs, “Certificates and Security”, [Online]. Available:
http://projects.puppetlabs.com/projects/1/wiki/certificates_and_sec
urity [Accessed: May 21, 2013]

[33] Puppet labs, “Configuration Reference - usecacheonfailure”,
[Online]. Available:

http://docs.puppetlabs.com/references/latest/configuration.html#use
cacheonfailure [Accessed: May 28, 2013]

[34] Op5 AB, “Ninja”, [Online]. Available:

http://www.op5.org/community/plugin- inventory/op5-
projects/ninja [Accessed: May 21, 2013]

[35] Op5 AB, “Merlin”, [Online]. Available:
http://www.op5.org/community/plugin- inventory/op5-
projects/merlin [Accessed: May 22, 2013]

[36] Op5 AB, “User Manual op5 NRPE 2.7.0”, 2006, [Online].

http://docs.puppetlabs.com/learning/variables.html

35

Available:
http://www.op5.com/manuals/extras/op5_NRPE_2.7_manual.pdf
[Accessed: May 28, 2013]

[37] A. M. Graziano and M. L. Raulin. (2010). Research methods, pp.

30-1

36

Attachments
Contents

A – WEB GUI __ i
B - Manifest for puppet_script ___ v
C – Manifest for NRPE __ vi
D - Manifest for monitor_script __ix
E – Add check on nodes __ x
F - Add hosts ___ xiii
G - Add services linux __ xiv
H - Add nodes puppet__ xvi
I - Remove nodes puppet __xvii
J - Puppet code for runinterval and usecacheonfailure _____________________ xix

i

A – WEB GUI

1. <html>
2. <head>
3. <style type="text/css">
4. .tooltip-wrap {
5. position: relative;
6. }
7. .tooltip-wrap .tooltip-content {
8. display: none;
9. position: absolute;
10. top: 15%;
11. left: 5%;
12. right: 5%;
13. background-color: #F0F0F0;
14. padding: .5em;
15. }
16. .tooltip-wrap:active .tooltip-content {
17. display: block;
18. }
19.
20. .image-lnu {
21. position: absolute;
22. top: 85%;
23. left: 85%;
24. }
25. </style>
26. </head>
27. <body>
28.
29. <!-- Information to the viewer -->
30. <p>This widget is used to add new hosts and to add services to new and / or existing

 nodes.
31.

32. <div class="image-lnu">
33.
34. </div>
35. <div class="tooltip-wrap">
36. <img src="http://monitor.rosi.local/question.jpg" alt="Some Image" width="35" heig

ht="35" />
37. <div class="tooltip-content">
38. <p> Example file:

39. linuxnode1.example.com

40. linuxnode2.example.com

41. linuxserver.example.com

42.

43. (.txt and no larger than 20 KB)
44. </p>

45. </div>
46. </div>
47.
48. <!-- Upload hostname and checks files -->
49. <form action="" method="post"
50. enctype="multipart/form-data">
51. <label for="hostname">Hostnames:</label>

52. <input type="file" name="hostname" id="hostname">

ii

53.
54. <div class="tooltip-wrap">
55. <img src="http://monitor.rosi.local/question.jpg" alt="Some Image" width="35" heig

ht="35" />
56. <div class="tooltip-content">
57. <p> <p>Example file:

58. command[users]=/opt/plugins/check_users -w 5 -c 10

59. command[load]=/opt/plugins/check_load -w 15,10,5 -c 30,25,20

60. command[swap]=/opt/plugins/check_swap -w 20% -c 10%

61.

62. (.txt and no larger than 20 KB)

63.

64. </p>
65. </div>
66. </div>
67. <label for="service">Add and/or change service:</label>

68. <input type="file" name="service" id="service">

69.
70. <div class="tooltip-wrap">
71. <img src="http://monitor.rosi.local/question.jpg" alt="Some Image" width="35" heig

ht="35" />

72. <div class="tooltip-content">
73. <p>Choose the script file to be uploaded. The script's command should be include

d in the file above.

74.

75. (Script files and no larger than 20KB)
76. </p>
77. </div>
78. </div>
79. <label for="script">Upload new script(opt):</label>

80. <input type="file" name="script" id="script">

81.
82.
83. <p> Please note that the change may take up 7-8 minutes to complete.</p>
84.
85. <input type="submit" name="submit" value="Submit">
86.

87.
88. <?php
89. error_reporting (E_ALL ^ E_NOTICE);
90. if (isset($_POST['submit'])){
91. //Hostname begins
92. if ((($_FILES["hostname"]["type"] == "text/plain") && ($_FILES["hostname"]["

size"]< 20000))){
93. if ($_FILES["hostname"]["error"] > 0) {
94. echo "Error: " . $_FILES["hostname"]["error"] . "
";
95.
96. }
97. else {
98. echo "Upload: " . $_FILES["hostname"]["name"] . "
";
99. echo "Stored in: " . ($_FILES["hostname"]['/mnt/upload/']);

100. }
101. if (file_exists("/mnt/upload/" . $_FILES["hostname"]["name"]))

 {
102. echo $_FILES["hostname"]["name"] . " already exists."

. "
";
103. }
104. else {
105. move_uploaded_file($_FILES["hostname"]["tmp_name"],

106. "/mnt/upload/" . $_FILES["hostname"]["name"]);
107. echo "Stored in: " . "/mnt/upload/" . $_FILES["hostnam

e"]["name"] . "
";
108. }
109. }
110. else {

iii

111. echo "Invalid file" . "
";
112. }
113.
114. //Service begins
115. if ((($_FILES["service"]["type"] == "text/plain") && ($_FILES["service

"]["size"]< 20000))){
116. if ($_FILES["service"]["error"] > 0) {
117. echo "Error: " . $_FILES["service"]["error"] . "
";

118. }
119. else {
120. echo "Upload: " . $_FILES["service"]["name"] . "
";

121. echo "Stored in: " . ($_FILES["service"]['/mnt/upload/

']);
122. }
123. if (file_exists("/mnt/upload/" . $_FILES["service"]["name"]))

{
124. echo $_FILES["service"]["name"] . " already exists. "

. "
";
125. }

126. else {
127. move_uploaded_file($_FILES["service"]["tmp_name"],
128. "/mnt/upload/" . $_FILES["service"]["name"]);
129. echo "Stored in: " . "/mnt/upload/" . $_FILES["service

"]["name"] . "
";
130. }
131. }
132. else {
133. echo "Invalid file" . "
";
134. }
135.
136. //Script begins
137. if ((($_FILES["script"]["type"] == "application/octet-stream"))
138. && ($_FILES["script"]["size"]< 20000)){
139.
140. if ($_FILES["script"]["error"] > 0) {
141. echo "Error: " . $_FILES["script"]["error"] . "
";

142. }
143. else {
144. echo "Upload: " . $_FILES["script"]["name"] . "
";

145. echo "Stored in: " . ($_FILES["script"]['/mnt/scripts/

']);
146. }
147. if (file_exists("/mnt/scripts/" . $_FILES["script"]["name"]))

{
148. echo $_FILES["script"]["name"] . " already exists. " .

 "
";
149. }
150. else {
151. move_uploaded_file($_FILES["script"]["tmp_name"],
152. "/mnt/scripts/" . $_FILES["script"]["name"]);
153. echo "Stored in: " . "/mnt/scripts/" . $_FILES["script

"]["name"] . "
";
154. }
155. }
156. else {
157. echo "Invalid file" . "
";

158. }
159. }
160.
161. echo "For progress, update the page:" . "
";
162. $filestring = file_get_contents('/mnt/done.txt');
163. echo nl2br(htmlspecialchars($filestring));

iv

164.
165. ?>
166. </form>
167.
168.

169.

170. © Simon Blixt & Robin Jonsson.
171. </body>
172. </html>

v

B - Manifest for puppet_script

1. ## == pupppet_script

2.
3. class puppet_script {
4.
5. $script1 = '/usr/local/bin/add_nodes_puppet.sh'
6. $script1source = 'puppet:///modules/puppet_script/add_nodes_puppet.sh'
7. $script2 = '/usr/local/bin/remove_nodes_puppet.sh'
8. $script2source = 'puppet:///modules/puppet_script/remove_nodes_puppet.sh'
9.

10. Exec {
11. path => ['/sbin', '/bin','/usr/sbin', '/usr/bin']
12. }
13.
14. #Define in which order the subclasses should be executed
15.
16. class {'puppet_script::add_nodes': } ->
17. class {'puppet_script::remove_nodes': }
18. }
19.
20. #Subclass add_nodes which checks if /mnt/upload/hosts_op5.txt exist. If it exists th

e script add_nodes_puppet.sh is executed on the Puppet master.
21. class puppet_script::add_nodes inherits puppet_script
22. {
23. file {$script1:
24. source => $script1source,
25. mode => '755'
26. }
27.
28. exec {$script1:
29. require => File[$script1],
30. onlyif => 'test -f /mnt/upload/hosts_op5.txt'
31. }
32. }
33.
34. #Subclass remove_nodes which checks if /mnt/test.txt (points on /mnt/done.txt). If i

t changes the script remove_nodes_puppet.sh is executed on the Puppet master.
35. class puppet_script::remove_nodes inherits puppet_script
36. {
37. file {$script2:
38. source => $script2source,
39. mode => '755'
40. }
41.
42. file {'/mnt/test.txt':
43. mode => '766',
44. source => '/mnt/done.txt'
45. }
46.
47. exec {$script2:
48. subscribe => File['/mnt/test.txt'],
49. refreshonly => true
50. }
51. }

vi

C – Manifest for NRPE

1. ## == nrpe

2.
3. #Main class for NRPE, define variables etc
4. class nrpe (
5.
6.)
7.
8. #Defines how the subclasses should be executed
9.
10. {
11. class {'nrpe::mount': } ->
12. class {'nrpe::install': } ->
13. class {'nrpe::files': } ->
14. class {'nrpe::service': } ->
15. class {'nrpe::run_script': }
16. }
17.
18. #Ensures that the fileserver is mounted.
19.
20. class nrpe::mount {
21. Exec {
22. path => ['/sbin', '/bin','/usr/sbin', '/usr/bin']
23. }
24. mount {'/mnt':
25. device => 'fileserver.rosi.local:/share',
26. fstype => 'nfs',
27. ensure => 'mounted',
28. options => 'defaults',
29. atboot => 'false'
30. }
31. }
32.
33. #Makes sure that the dependencies of NRPE is installed, and then installs NRPE from

the packages located on the fileserver.
34.
35. class nrpe::install {
36.
37. package {'gnutls':
38. ensure => installed,
39. }
40.

41. package {'mysql':
42. ensure => installed,
43. require => package['gnutls']
44. }
45.
46. package {'postgresql':
47. ensure => installed,
48. require => package['mysql']
49. }
50.
51. package {'nrpe_nagiosplugins-2.13.1-release.x86_64':
52. ensure => installed,
53. provider => rpm,
54. source => '/mnt/packages/nrpe-2.13-nagios_plugins-1.4.15-CentOS_6-

2.13.1_x86_64.rpm',
55. require => package['postgresql']
56. }
57. }
58.
59. #Disabling SElinux. Otherwise NRPE can't communicate with the NMS. Should add an exc

eption instead later on.

vii

60.
61. class nrpe::files {
62. Exec {
63. path => ['/sbin', '/bin','/usr/sbin', '/usr/bin']
64. }
65.
66. exec {'setenforce 0':
67. onlyif => 'grep -c SELINUX=enforcing /etc/selinux/config',
68. before => file_line['remove_line']
69. }
70.
71. file_line {'remove_line':
72. path => '/etc/selinux/config',
73. line => 'SELINUX=enforcing',
74. ensure => absent
75. }
76.
77. file_line {'add_selinux_disabled':
78. path => '/etc/selinux/config',
79. line => 'SELINUX=disabled',
80. require => file_line['remove_line']

81. }
82.
83. }
84.
85. #Edit the NRPE conf to allow the op5 monitor to communicate with the node. Restart t

he service when the config-file is changed.
86.
87. class nrpe::service {
88.
89. file_line {'remove_hosts':
90. path => '/etc/nrpe.conf',
91. line => 'allowed_hosts=127.0.0.1',
92. ensure => absent,
93. before => file_line['allowed_hosts']
94. }
95.
96. file_line {'allowed_hosts':
97. path => '/etc/nrpe.conf',
98. line => 'allowed_hosts=127.0.0.1,139.139.139.4'
99. }
100.
101. file {'/etc/nrpe.conf':
102. source => 'puppet:///files/nrpe.conf'
103. }
104.
105. exec {'service nrpe restart':
106. path => ['/sbin', '/bin','/usr/sbin', '/usr/bin'],

107. subscribe => File['/etc/nrpe.conf'],
108. refreshonly => true
109. }
110. }
111.
112. # Executes the script add_check_on_nodes.sh if the file /mnt/upload/checks.txt

 exists.
113. class nrpe::run_script {
114.
115. $script1 = '/usr/local/bin/add_check_on_nodes.sh'
116. $script1source = 'puppet:///modules/nrpe/add_check_on_nodes.sh'

117.
118. Exec {
119. path => ['/sbin', '/bin','/usr/sbin', '/usr/bin']
120. }
121.
122. file {$script1:

viii

123. source => $script1source,
124. mode => '755'
125. }
126.
127. exec {$script1:
128. require => File[$script1],
129. onlyif => 'test -f /mnt/upload/checks.txt'
130. }
131. }

ix

D - Manifest for monitor_script

1. ## == monitor_script
2.
3. # Main class for monitor_script, define variables etc.
4.
5. class monitor_script {
6.
7. $script1 = '/usr/local/bin/add_hosts.sh'
8. $script1source = 'puppet:///modules/monitor_script/add_hosts.sh'
9. $script2 = '/usr/local/bin/add_services_linux.sh'
10. $script2source = 'puppet:///modules/monitor_script/add_services_linux.sh'
11.
12. #Define in which order the subclasses should be executed
13.
14. class {'monitor_script::run_hosts': } ->
15. class {'monitor_script::run_checks': }
16. # class {'monitor_script::unmount': }
17. }
18.
19. #Sending the script "add_hosts.sh" to the monitor and execute it if the file /mnt/up

load/hosts_op5.txt exists.
20.
21. class monitor_script::run_hosts inherits monitor_script {
22.
23. Exec {
24. path => ['/sbin', '/bin','/usr/sbin', '/usr/bin']
25. }

26.
27. file {$script1:
28. source => $script1source,
29. mode => '755'
30. }
31.
32. exec {$script1:
33. require => File[$script1],
34. onlyif => 'test -f /mnt/upload/hosts_op5.txt'
35. }
36. }
37.
38. #Sending the script "add_services_linux.sh" to the monitor and execute it if the fil

e /mnt/upload/checks.txt exists.
39.
40. class monitor_script::run_checks inherits monitor_script {
41.
42. Exec {
43. path => ['/sbin', '/bin','/usr/sbin', '/usr/bin']
44. }
45.
46. file {$script2:
47. source => $script2source,
48. mode => '755'
49. }
50.
51. exec {$script2:
52. require => File[$script2],
53. onlyif => 'test -f /mnt/upload/checks.txt'
54. }
55. }

x

E – Add check on nodes

1. #!/bin/bash
2. #Script to add checks on nodes(linux)
3.
4. #path to the monitors check-file.
5. path_op5_commands="/etc/nrpe.d/op5_commands.cfg"
6.
7. #Read the new checks
8. while read new_check
9. do
10.
11. #Variable to check if new check is present, changed, or new.
12. exists_nr=0
13. #Variable to check if a restart should occur or not.
14. restart_value=0
15.
16. #Strips out the new check's command-name
17. new_check_command=$(echo "$new_check" | awk -F] '{print $1}'|awk -

F['{print $2}')
18.
19. #Read the existing checks
20. while read existing_check
21. do
22. #Strips out the existing check command-name
23. existing_check_command=$(echo "$existing_check" | awk -

F] '{print $1}'|awk -F['{print $2}')
24.
25. #If new check command-name equals existing check command-

name..
26. if ["$new_check_command" == "$existing_check_command"];

27. then
28. #..check if the whole new check is equal to the exis

ting.
29. if ["$new_check" == "$existing_check"];
30. then
31. #If it is, increase $exists_nr with 1.
32. exists_nr=$(($exists_nr + 1))
33. #If not, it means the new check has different values

.
34. else
35. #Therefore, decrease $exists_nr with 1..
36. exists_nr=$(($exists_nr - 1))
37. #.. and sets the $existing_check to $delete_

check..
38. delete_check=$existing_check_command
39. #.. and $new_check to $add_check
40. add_check=$new_check
41. fi
42. else
43. #If new checks command is not equal to existing comm

and (which means the new check does not exist with different parameters)..
44. #.. sets $exists_nr with plus 0.
45. exists_nr=$(($exists_nr + 0))
46. #Sets $add_check to $new_check
47. add_check=$new_check
48.
49. fi
50. done < /etc/nrpe.d/op5_commands.cfg
51.
52. #If $exists_nr is greater then 0..
53. if [$exists_nr -gt 0];
54. then
55. #Print out that the check is already present.
56. echo "The check, $new_check, is already present."

xi

57. #Or if $exists_nr is lower then 0..
58. elif [$exists_nr -lt 0];
59. then
60. #Print out that the check is present but has different values.
61. echo "The check $new_check is present but has different values. Dele

ting old and adding new."
62. #And delete the line which is the existing one, with old values.
63. sed -i "/$delete_check/ d" $path_op5_commands
64. #And add the new one, with the new values.
65. $(echo "$add_check" >> "$path_op5_commands")
66. #Increase $restart_value with 1.
67. restart_value=$(($restart_value + 1))
68. #Or if $exists_nr is equal to 0..
69. elif [$exists_nr -eq 0];
70. then
71. echo "The check $new_check has been added"
72. #.. the new check is added.
73. $(echo "$add_check" >> "$path_op5_commands")
74. #And the $restart_value is increased with 1.
75. restart_value=$(($restart_value + 1))
76. #Add new script-file to local storage for the NRPE-scripts.

77. script_name=`ls /mnt/scripts/`
78. if [-z "$script_name"];
79. then
80. echo "No script to upload."
81. else
82. cp "/mnt/scripts/$script_name" /opt/plugins/
83. chmod +x /opt/plugins/"$script_name"
84. fi
85. else
86. echo "Unknown error. $exist_nr"
87. fi
88. done < /mnt/upload/checks.txt
89.
90. #Check if the $restart_value is greater then 0..
91. if [$restart_value -gt 0];
92. then
93. #.. if so, restart nrpe. This means that a new check has been added, or an o

ld one has been modified.
94. service nrpe restart
95. fi
96.
97. #If OP5_Commands = uploaded file; then report done.
98. counter=$(wc -l < /mnt/upload/checks.txt)
99. exist_value=0
100. while read new_check
101. do
102.
103. while read existing_check
104. do
105. if ["$new_check" == "$existing_check"];
106. then
107. exist_value=$(($exist_value + 1))
108. else
109. exist_value=$(($exist_value + 0))
110. fi
111.
112. done < /etc/nrpe.d/op5_commands.cfg
113. done < /mnt/upload/checks.txt
114.

115. if [$exist_value -eq $counter];
116. then
117. if [-f /mnt/done.txt];
118. then
119. hostname=$(hostname -f)
120. test=`cat /mnt/done.txt | grep "$hostname"`

xii

121. if ["$hostname" == "$test"];
122. then
123. echo "Hostname exist in /mnt/done.txt, nothing to do."

124. else
125. echo "All checks are present."
126. echo "$hostname" >> /mnt/done.txt
127. fi
128. else
129. echo "ERROR!The file /mnt/done.txt does not exist."
130. fi
131. else
132. echo "ERROR! All checks have not been added."
133. fi

xiii

F - Add hosts

1. #!/bin/bash

2. #
3. #Script to add hosts to op5 via CLI
4. unset $hostnames
5. unset $hostname
6. #Read the file with the new hosts and saves it in a variable.
7. hostnames=`cat /mnt/upload/hosts_op5.txt`
8.
9. #Read the file with the existing hosts and saves it in a variable.
10. existing_hostnames=`cat /opt/monitor/etc/hosts.cfg | grep host_name | awk '{print $2

}'`
11.
12. #Loops all hostnames in $hostnames and puts one after one in $hostname
13. for hostname in $hostnames
14. do
15.
16. #A value to indicate if changes have occured.
17. existing_value=0
18. #For each existing host..
19. for existing_hostname in $existing_hostnames
20. do
21. #.. check if it is the same hostname as the new host.
22. if ["$existing_hostname" == "$hostname"];
23. then
24. #If it is, add + 1 to the existing_value.
25. existing_value=$(($existing_value + 1))
26. else
27. #If it is not, add nothing to the existing_value.
28. existing_value=$(($existing_value + 0))
29. fi
30. done
31. #If existing_value is equal to 0, this means the new host is not present, an

d shall thereby be added to the NMS.
32. if [$existing_value -eq 0];
33. then
34. #Add host to op5 via op5 monitor API and saves the $hostname in a te

mp-file (Why?).
35. php /opt/monitor/op5/nacoma/api/monitor.php -t host -

o host_name=$hostname -o address=$hostname -o template=default-host-template -
u monitor

36. echo $hostname >> /tmp/hostnames

37. #Set save equals to one, which will indicate that changes has occure
d and thereby the Nacoma should save the configuration.

38. save=1
39. #If existing value is greather then 0 it means that the host is already pres

ent.
40. elif [$existing_value -gt 0];
41. then
42. echo "the node $hostname does already exist."
43. else
44. echo "Unknown error."
45. fi
46. done
47. if [$save -eq 1];
48. then
49. #Saving the configuration done by the op5 monitor API, which will then be pr

esented on the WEB GUI.
50. php /opt/monitor/op5/nacoma/api/monitor.php -a save_config -u monitor
51. else
52. echo "Nothing to save. All hosts are present."
53. exit 0;
54. fi

xiv

G - Add services linux

1. #!/bin/bash
2. #Script to add services for linux systems to the op5 monitor GUI.
3.
4. #Read machines (hostnames) from file (machines)
5.
6. machines=`cat /mnt/upload/hosts_op5.txt`
7.
8. #For each $machine in $machines..
9. for machine in $machines
10. do
11. #Read checks (full names for the checks)
12. #example from /mnt/checks: command[users]=/opt/plugins/check_users -w 5 -

c 10
13. while read check
14. do
15. #Cutting of to the command_args, for example -w 5 -c 10
16. command_args=$(echo $check | awk -F] '{print $1}'|awk -

F['{print $2}')
17.
18. #Cutting of to the description of the service, for example Check Use

rs.
19. desc=$(echo "$command_args" | sed 's/_/\ /g')
20. #Execute the op5 monitor API command to add new services, and using

the variable for the hostname($machine), the service description ($desc), and the ch
eck_command_args ($command_args).

21. try_check=`php /opt/monitor/op5/nacoma/api/monitor.php -t service -
a show_object -n "$machine;$desc" -u monitor | grep check_command=`

22. if [! -z "$try_check"];
23. then

24. echo "The service $command_args is already present on node $
machine."

25. else
26. echo "Adding $command_args to $machine."
27. php /opt/monitor/op5/nacoma/api/monitor.php -t service -

o template=default-service -o host_name="$machine" -o service_description="$desc" -
o check_command=check_nrpe -o check_command_args="$command_args" -u monitor

28. fi
29. done < /mnt/upload/checks.txt
30.
31. #Add check-

ping because it is not provided by NRPE. Checks if it already present before.
32. check_ping=`php /opt/monitor/op5/nacoma/api/monitor.php -t service -

a show_object -n "$machine;PING" -u monitor | grep check_command=`
33. if [! -z "$check_ping"];
34. then
35. echo "The service check_ping is already present on $machine."
36. else
37. echo "Adding check_ping to $machine."
38. php /opt/monitor/op5/nacoma/api/monitor.php -t service -

o template=default-service -o host_name="$machine" -o service_description="$desc" -
o check_command=check_ping -o check_command_args=100,20%\!500,60% -u monitor

39. fi
40.
41. #Add check-ssh-

server because it is not provided by NRPE. Checks if it already present before.
42. check_ssh=`php /opt/monitor/op5/nacoma/api/monitor.php -t service -

a show_object -n "$machine;SSH Server" -u monitor | grep check_command=`
43. if [! -z "$check_ssh"];
44. then
45. echo "The service check_ssh is already present on $machine."
46. else
47. echo "Addinge check_ssh to $machine."

xv

48. php /opt/monitor/op5/nacoma/api/monitor.php -t service -
o template=default-service -o host_name="$machine" -
o service_description="SSH Server" -o check_command=check_ssh -
o check_command_args=5 -u monitor

49. fi
50. done
51. #Saving the configuration done by the API, which will then be presented on the op5 m

onitor WEB GUI.
52. php /opt/monitor/op5/nacoma/api/monitor.php -a save_config -u monitor

xvi

H - Add nodes puppet

1. #!/bin/bash

2. #
3. #Add nodes to puppet configuration file site.pp.
4. #Example output in /etc/puppet/manifests/site.pp
5. #node 'examplecomputer.example.com' {include example_module}
6. #
7. #
8.
9. #Read all nodes defined in /mnt/upload/hosts_op5.txt.
10. while read node
11. do
12. #Syntaxing the node definition correct with the module nrpe.
13. node_full="node '$node' { include nrpe }"
14. #Variable to check if configuration has occured.

15. exist_value=0
16. #Read all existing node defitions in site.pp
17. while read existing_node
18. do
19. #If the existing node is same as the new one in node_full..
20. if ["$existing_node" == "$node_full"]
21. then
22. #.. add + 1 to exist_value.
23. exist_value=$(($exist_value + 1))
24. else
25. #If it is not, add nothing.
26. exist_value=$(($exist_value + 0))
27. fi
28. done < /etc/puppet/manifests/site.pp
29.
30. #If exist_value is greather then 0 it means that the node is already present.
31. if [$exist_value -gt 0];
32. then
33. echo "Node $node already exist."
34. #Or if exist_value is equal to 0 it means that the node is not present and should th

en be added to site.pp.
35. elif [$exist_value -eq 0];
36. then
37. echo "Node $node added."
38. echo "$node_full" >> /etc/puppet/manifests/site.pp
39. fi
40.
41. done < /mnt/upload/hosts_op5.txt

xvii

I - Remove nodes puppet

1. #!/bin/bash
2. #
3. #Remove node-def. from /etc/puppet/manifests/site.pp, gained from /mnt/done.txt
4.
5. #Checks how many lines there are in hosts_op5.txt. The number is equal to the number

 hostnames defined in hosts_op5.txt.
6. counter=$(wc -l < /mnt/upload/hosts_op5.txt)
7. #Variable to know if changes have occurred.
8. exist_value=0
9. #Read every nodes in hosts_op5.txt
10. while read uploaded_node
11. do
12. #And read all nodes in done.txt
13. while read done_node
14. do
15. #if the node in done.txt is equal to a node in hosts_op5.txt..
16. if ["$done_node" == "$uploaded_node"];
17. then
18. #.. add + 1 to the exist_value.
19. exist_value=$(($exist_value + 1))
20. else
21. #Otherwise add 0.
22. exist_value=$(($exist_value + 0))
23. fi
24.
25. done < /mnt/done.txt
26.
27. done < /mnt/upload/hosts_op5.txt
28. #If exist_value is equal to the counter.. (In other words: if the number of matches

in done.txt compared to hosts_op5.txt is equal to the number of lines in hosts_op5.t
xt, do the following:)

29. #This means that done.txt contains all hostnames in hosts_op5.txt, and thereby are a
ll nodes done with the configurations.

30. if [$exist_value -eq $counter];
31. then
32.
33. #If the archive-

directory exist, move the file checks.txt and hosts_op5.txt to that directory.
34. if [-d /mnt/archived_services_and_hosts];
35. then
36. mv /mnt/upload/hosts_op5.txt /mnt/archived_services_and_hosts/hosts_

op5_$(date +%F)_$(date +%T)

37. mv /mnt/upload/checks.txt /mnt/archived_services_and_hosts/checks_$(
date +%F)_$(date +%T)

38. else
39. #If the directory does not exist, create it and then move the files.

40. mkdir -p /mnt/archived_services_and_hosts/
41. mv /mnt/upload/hosts_op5.txt /mnt/archived_services_and_hosts/hosts_

op5_$(date +%F)_$(date +%T)
42. mv /mnt/upload/checks.txt /mnt/archived_services_and_hosts/checks_$(

date +%F)_$(date +%T)
43. fi
44. # For every node in done.txt, remove it from site.pp and then done.txt.
45. while read node
46. do
47. node_full="node '$node' { include nrpe }"
48. sed -i "/$node_full/d" /etc/puppet/manifests/site.pp
49. sed -i "/$node/d" /mnt/done.txt
50. done < /mnt/done.txt
51. #Deletes the uploaded script, if it is uploaded.

xviii

52. script_name=`ls /mnt/scripts/`
53. if [-z "$script_name"];
54. then
55. echo "No script seems to be uploaded. Nothing to delete."
56. else
57. rm -f "/mnt/scripts/$script_name"
58. fi
59. #Else, something is wrong.
60. else
61. echo "The file /mnt/done.txt does not exist, which it should because this sc

ript is executed by its existence. It can also mean that the files are different, pl
ease wait 2-4 minutes."

62. fi

xix

 J - Puppet code for runinterval and usecacheonfailure

1. node default {
2.
3. file_line {'runinterval':
4. ensure => present,
5. path => '/etc/puppet/puppet.conf',
6. line => 'runinterval=120',
7. before => File_line['cache']
8. }
9.
10.
11. file_line {'cache':
12. ensure => present,
13. path => '/etc/puppet/puppet.conf',
14. line => 'usecacheonfailure=false'
15. }
16.
17. exec {'service puppet restart':
18. path => ['/sbin', '/bin','/usr/sbin', '/usr/bin'],
19. subscribe => File_line['cache'],
20. refreshonly => true
21. }
22. }

